# The Co-Si-V (Cobalt-Silicon-Vanadium) System

K.P. Gupta, The Indian Institute of Metals

#### Introduction

Only limited information is available for the Co-Si-V system. One partial isothermal section close to the Co-V system has been reported. This reports solid solibility of  $AB_3$  phases in each other and the existence of several ternary intermediate phases.

### **Binary Systems**

The Co-Si system [Massalski2] (Fig. 1) has five intermediate phases,  $Co_3Si(\iota)$ ,  $\alpha Co_2Si(\rho_1)$ ,  $\beta Co_2Si(\rho_2)$ ,  $CoSi(\zeta)$ , and  $CoSi_2(\pi)$  of which the  $\beta Co_2Si$ , CoSi, and  $CoSi_2$  phases melt congruently at 1334, 1460, and 1326 °C, respectively. The  $Co_3Si(\iota)$  and  $\alpha Co_2Si(\rho)$  phases form through peritectic reactions,  $L + \rho_1 \leftrightarrow \iota$  at 1214 °C and  $L + \rho_2 \leftrightarrow \rho_1$  at ~1320 °C. With the addition of Si to Co, the close packed hexagonal (cph) ( $\epsilon$ Co) phase is stabilized to high temperatures, and at 1250 °C a peritectic reaction,  $L + (\phi Co) \leftrightarrow$ ( $\epsilon$ Co), occurs. The  $Co_3Si(\iota)$  and  $\beta Co_2Si(\rho)$  phases exist only at high temperatures and decompose through eutectoid reactions i  $\leftrightarrow (\epsilon Co) + \rho_1$  at 1193 °C and  $\rho_2 \leftrightarrow \rho_1 + \zeta$  at 1286 °C. The four eutectic reactions  $L \leftrightarrow (\epsilon Co) + \iota, L \leftrightarrow \rho_2 + \zeta$ ,  $L \leftrightarrow \zeta + \pi$ , and  $L \leftrightarrow \pi + (Si)$  occur at 1204, 1286, 1310, and 1259 °C, respectively.

The Co-V system [Massalski2] (Fig. 2) has three intermediate phases, Co<sub>3</sub>V ( $\gamma$ ),  $\sigma$ , and CoV<sub>3</sub> ( $\beta$ ). The  $\sigma$  phase forms through the peritectic reaction L + (V)  $\sigma$  at 1422 °C. The ( $\phi_p$ Co) phase transforms congruently to cubic Co<sub>3</sub>V ( $\gamma'$ ) phase at 1070 °C, and then the  $\gamma'$  phase transforms to hexagonal Co<sub>3</sub>V ( $\gamma$ ) at ~1025 °C. The CoV<sub>3</sub> ( $\beta$ ) phase forms through the peritectoid reaction  $\sigma$  + (V)  $\leftrightarrow \beta$  at 1025 °C. At the Co end, the transformation ( $\phi_f$ Co)  $\leftrightarrow (\epsilon$ Co) occurs at 422 °C. At above ~5 at.% V, the ( $\phi$ Co) phase has been suggested to transform from the paramagnetic  $\phi_p$  state to ferromagnetic  $\phi_f$  state through a eutectoid type reaction. Only one eutectic reaction L  $\leftrightarrow (\phi_p$ Co) +  $\sigma$  occurs at 1248 °C.

The Si-V system [Massalski2] (Fig. 3) has four intermediate phases, SiV<sub>3</sub>( $\beta$ ), Si<sub>3</sub>V<sub>5</sub>( $\xi$ ), Si<sub>5</sub>V<sub>6</sub> ( $\theta$ ), and Si<sub>2</sub>V ( $\delta$ ), of which the  $\beta$ ,  $\xi$ , and  $\delta$  phases melt congruently at 1925, 2010, and 1697 °C, respectively. Except for the  $\beta$  phase, the other intermediate phases are single-composition stoichiometric phases. The Si<sub>5</sub>V<sub>6</sub> phase occurs through the peritectic reaction L +  $\xi \leftrightarrow \theta$  at 1670 °C, and it undergoes the eutectoid transformation  $\theta \leftrightarrow \xi + \delta$  at ~1160 °C. The four eutectic reactions L  $\leftrightarrow$  (V) +  $\beta$ , L  $\leftrightarrow \beta + \xi$ , L  $\leftrightarrow \theta + \delta$ , and L  $\leftrightarrow \delta$  + (Si) occur at 1870, 1895, 1640, and 1400 °C, respectively.

### **Binary and Ternary Phases**

In the three binary systems of the Co-Si-V system, 12 intermediate phases form. In the investigated region of the

Co-Si-V system, the existence of a large number of ternary intermediate phases have been reported. The structure data for the binary and ternary phases are given in Table 1.

## **Ternary System**

To study the effect of Si on the stabilization of the  $\sigma$  phase in transition metal systems, the V-Co-Si system was studied by [1960Gup] only very close to the  $\sigma$  phase region. Electrolytic grade component elements were arc-melted under a He atmosphere. The alloys were sealed in evacuated fused silica capsules, and were annealed at 1175 °C for 72 h and quenched in water. The annealed alloys were characterized by metallography and x-ray diffraction methods. Fig. 4 shows that the  $\sigma$  phase in the Co-V system dissolves a maximum of ~5 at.% Si. The face-centered cubic (fcc) ( $\phi_p$ Co) phase at ~34 at.% V was found in equilibrium with the  $\sigma$  phase along a line extending from ~45 at.% Co at 0 at.% Si to ~38 at.% Co at ~3 at.% Si.

The other phases in equilibrium with the  $\sigma$  phase were not identified, but the presence of a three phase equilibrium at the top of the  $\sigma$  phase field was indicated by [1960Gup].

In subsequent related explorations of the stabilization of R and MgZn<sub>2</sub>-type Laves phases by Si [1961Bar1, 1961Bar2], an R phase was found to be present in the V-Co-Si system at the  $Co_{40}Si_{15}V_{45}$  composition at 1100 °C [1961Bar1], and a MgZn<sub>2</sub>-type Laves phase  $\Gamma_1$  was found to exist at the Co<sub>5</sub>Si<sub>3</sub>V<sub>4</sub> composition [1961Bar2] at 1100 °C. These compositions are shown in Fig. 4. The existence of a  $\Gamma_1$  phase in V-Co-Si system was also reported by [1961Gla] at the  $Co_{37}Si_{20}V_{34}$  composition (point 2 in Fig. 4). The lattice parameters of the R and the  $\Gamma_1$  phases were reported to be a = 1.078 nm, c = 1.914 nm [1961Bar1] for the R phase, and a = 0.47 nm and c = 0.747 nm [1961Bar2] and a = 0.471 and c = 0.724 nm [1961Gla] for the  $\Gamma_1$  phase. The R phase was found to be in equilibrium with the  $\sigma$ phase [1961Bar1]. One other phase found in equilibrium with the  $\sigma$  phase [1961Bar1] was the  $\chi$  phase, which was discovered by [1961Gla] at the  $Co_{52}Si_{20}V_{28}$  composition. The probable phase equilibria involving the  $\sigma$ ,  $\phi$ ,  $\chi$ , and R phases are given schematically in Fig. 4. Because no equilibrium between the  $\Gamma_1$  phase and the  $\sigma$  phase was reported and because the  $\varphi_1$  phase composition was found to be close to the  $\chi$  and R phases, it is possible that the  $\Gamma_1$  phase is in equilibrium with the  $\chi$  and R phases.

In a search for electron phases in transition metal-Si ternary systems, a more complete investigation of the Co-Si-V system in the region 0 to  $\sim$ 50 at.% Si was made by [1966Bar]. Co and V, each of 99.9+ mass% purity, and Si of 99.98 mass% purity were used to prepare the alloys by arc melting under a He atmosphere. The alloys were sealed in an evacuated fused silica capsules and were annealed at 1100 °C (time of annealling was not mentioned) and



Fig. 1 Co-Si phase diagram [Massalski2]



Fig. 2 Co-V phase diagram [Massalski2]

quenched in water. X-ray diffraction and metallography were used for phase identification and phase boundary determination. A few alloys that were close to the phase boundaries were chemically analyzed to accurately locate the phase boundaries. The 1100 °C isothermal section established by [1966Bar] is given in Fig. 5. At 1100 °C, the  $\sigma$ ,  $\chi$ , and R phases, and two regions of MgZn<sub>2</sub> type Laves phase,  $\Gamma_1$  and  $\Gamma'_1$ , exist. A comparison of the isothermal section at 1175 °C in Fig. 4 with the isothermal section at 1100 °C in Fig. 5 shows a



Fig. 3 Si-V phase diagram [Massalski2]

| Table 1 | Binary an | d ternary | phases in | the | Co-Si-V | system |
|---------|-----------|-----------|-----------|-----|---------|--------|
|         |           |           |           |     |         |        |

| Phase           | Composition(a)                                            | Pearson<br>symbol | Space<br>group       | Туре                            | Lattice parameter, nm |        |           |
|-----------------|-----------------------------------------------------------|-------------------|----------------------|---------------------------------|-----------------------|--------|-----------|
| designation     |                                                           |                   |                      |                                 | a                     | b      | с         |
| φ               | (φCo)                                                     | cF4               | Fm3m                 | Cu                              |                       |        |           |
| α               | (V)                                                       | cI2               | Im3m                 | W                               |                       |        |           |
| e               | (eCo)                                                     | hP2               | $P6_3/mmc$           | Mg                              |                       |        |           |
| Si              | (Si)                                                      | cF8               | $Fd\overline{3}mc$   | c(Diamond)                      |                       |        |           |
| ι               | (Co <sub>3</sub> Si)                                      |                   |                      |                                 |                       |        |           |
| $\rho_1$        | $\alpha Co_2 Si(32 \text{ to } 34 \text{ Si})$            | oP12              | Pnma                 | Co <sub>2</sub> Si              | 0.7109                | 0.4918 | 0.3738    |
| ρ <sub>2</sub>  | βCo <sub>2</sub> Si(~32 to 35.8 Si)                       |                   |                      |                                 |                       |        |           |
| ζ               | CoSi                                                      | cP8               | P2 <sub>1</sub> 3    | FeSi                            | 0.4447                |        |           |
| π               | CoSi <sub>2</sub>                                         | cF12              | $Fm\overline{3}m$    | CaF <sub>2</sub>                | 0.5376                |        |           |
| $\gamma'$       | Co <sub>3</sub> V                                         | cP4               | $Pm\overline{3}m$    | AuCu <sub>3</sub>               |                       |        |           |
| γ               | Co <sub>3</sub> V                                         | hP24              | $P\overline{6}m2$    | Co <sub>3</sub> V               | 0.5032                |        | 1.227     |
| σ               | ~44 to ~72 V                                              | <i>tP</i> 30      | P4 <sub>2</sub> /mnm | σ(Cr,Fe)                        | 0.8843                |        | 0.4586    |
| β               | CoV <sub>3</sub>                                          | cP8               | $Pm\overline{3}n$    | Cr <sub>3</sub> Si              | 0.4676                |        |           |
| β               | SiV <sub>3</sub>                                          |                   |                      |                                 | 0.4721                |        |           |
| ξ               | Si <sub>3</sub> V <sub>5</sub>                            | tI32              | I4/mcm               | Si <sub>3</sub> W <sub>5</sub>  | 0.943                 |        | 0.476     |
| θ               | Si <sub>5</sub> V <sub>6</sub>                            | <i>oI</i> 44      | Immm                 | Nb <sub>6</sub> Sn <sub>5</sub> |                       |        |           |
| δ               | $Si_2V$                                                   | hP9               | P6222                | CrSi <sub>2</sub>               | 0.4571                |        | 0.6372    |
| х               | Co <sub>56</sub> Si <sub>15</sub> V <sub>30</sub>         | <i>cI</i> 58      | <i>I</i> 43 <i>m</i> | αMn                             | 0.8766                |        |           |
| R               | Co <sub>35</sub> Si <sub>19</sub> V <sub>46</sub>         | hR53              | R3                   | R(Co,Cr,Mo)                     | 1.078                 |        | 1.914     |
| В               | Co <sub>27</sub> Si <sub>27</sub> V <sub>46</sub> (a)     |                   |                      |                                 |                       |        |           |
| С               | Co <sub>34</sub> Si <sub>27</sub> V <sub>39</sub> (a)     |                   |                      |                                 |                       |        |           |
| α'              | $Co_{59}Si_{26}V_{15}(a)$                                 | <i>cF</i> 16      | $Fm\overline{3}m$    | $AlFe_3(c)$                     |                       |        |           |
| $\Gamma_1$      | Co <sub>5</sub> Si <sub>3</sub> V <sub>4</sub>            | hP12              | $P6_3/mmc$           | MgZn <sub>2</sub>               | 0.47                  |        | 0.747     |
| $\Gamma'_1$     | Co <sub>26.7</sub> Si <sub>40</sub> V <sub>33.3</sub> (a) | hP12              | $P6_3/mmc$           | MgZn <sub>2</sub>               |                       |        |           |
| E               | CoSiV                                                     | oP12              | Pnma                 | PbCl <sub>2</sub>               | 0.5954                | 0.3584 | 0.6852(b) |
| J               | $Co_{45}Si_{40}V_{15}(a)$                                 |                   |                      |                                 |                       |        |           |
| (a) Composition | s in at.%.                                                |                   |                      |                                 |                       |        |           |



**Fig. 4** The extension of the  $\sigma$  phase in the Co-Si-V system at 1175 °C [1960Gup]. Also shown are the compositions at which the R, X, and  $\Gamma_1$  phases were reported at 1100 °C. The probable pseudobinary line CoV<sub>3</sub>-SiV<sub>3</sub> is shown by dash-dot line.

significant shift in the compositional range of stability of the  $\sigma$  phase. Both are in accord with the range of homogeneity of  $\sigma$  in the binary Co-V system at 0 at.% Si, and the  $\sigma$  phase boundaries of the two sections closely agree in the V-poor composition region 34 to 42 at.% V but show strongly divergent behavior at compositions >42 at.% V. In the 1175 °C section of Fig. 4, a maximum Si content in the  $\sigma$  phase is indicated as ~5 at.% at a V content of ~42 at.% and with a Si content decreasing monotonically at V compositions greater than ~42 at.%. In contrast, the 1100 °C section of Fig. 5 shows that the  $\sigma$  phase boundary at V compositions >42 at.% V exhibits a continuous increase in Si content with increasing V content to reach a maximum Si composition of ~12 at.% Si at a V composition of ~76 at.%. Figure 5 shows that the compositional coordinates,  $\sim 5$  at.% Si and  $\sim 42$  at.% V correspond to the point of contact of  $\sigma$  with the  $\sigma + \chi +$ R three-phase field, while the Si composition maximum at ~12 at.% Si and ~76 at.% V corresponds to the point of contact of  $\sigma$  with the  $\sigma + \beta + R$  three-phase field. In Fig. 4 at 1175 °C, the contour of the  $\sigma$  phase boundary shows a smooth monotonic curvature at V compositions >42 at.% with no indication of a contact between the  $\sigma$  and  $\beta$  phases. The implication is that Gibbs energy balances among the  $\sigma$ , β, and R phases change significantly over a 75 °C interval.

The  $\chi$  phase region was found to be reasonably wide, extended from ~21 to 32 at.% V and ~8 to 20 at.% Si. The R phase region was found to extend from 41 to 51 at.% V and 13 to 22 at.% Si, and extended parallel to the  $\sigma$  phase region. Unlike what was reported earlier (Fig. 4), the MgZn<sub>2</sub>-type Laves phase regions  $\Gamma_1$  and  $\Gamma_1'$  were found to exist along a line of 33.3 at.% V separated by a small E phase region (~1 at.% wide) existing at the CoSiV composition. Both the  $\Gamma_1$  and  $\Gamma_1'$  phase regions were found to be ~2 at.% V wide, the  $\Gamma_1$  phase region extended from ~26 to 31 at.% Si, and the  $\Gamma_1'$  phase region extended from ~38 to 44 at.% Si. It appears possible that the MgZn<sub>2</sub>-type Laves phase exists at some temperature other than 1100 °C as an



**Fig. 5** 1100 °C partial isothermal section of the Co-Si-V System [1966Bar].

elongated region covering the entire composition regions of the  $\Gamma_1$  E, and  $\Gamma_1'$  phases. The phase equilibria of the Co-Si-V system should be studied at temperatures lower and higher than 1100 °C to find whether a single extended  $\Gamma_1$ phase exists in the ternary system.

Several other intermediate-phase regions were established in the Co-Si-V system at 1100 °C. A small lensshaped  $\beta$  phase region, ~1 at.% V wide and 3 at.% Si long, was found at approximately the  $Co_{27}Si_{27}V_{46}$  composition. A C phase region, ~27 to 42 at.% V and ~24 to 30 at.% Si wide, was found at approximately the composition  $Co_{34}Si_{27}V_{39}$ , and a body-centered cubic (bcc)  $\alpha'$  phase (elongated along the 26 at.% Si line, about ~11 to 22 at.% V long and ~3 at.% Si wide) was found around the composition Co<sub>59</sub>Co<sub>26</sub>V<sub>15</sub>. A J phase was also found to exist at around the  $Co_{45}Si_{40}V_{15}$  composition. The phase boundary of the J phase region was not determined accurately. The  $\sigma$ phase was found to be in equilibrium with the  $\alpha$ ,  $\phi$ , R, and  $\chi$  phases, and the  $\Gamma_1$  phase was found to be in equilibrium with the  $\chi$ , R, C, E, J,  $\rho_1$ , and  $\alpha'$  phases. The  $\alpha$  Co<sub>2</sub>Si ( $\rho_1$ ) phase boundary was not determined, but it was found to extend to ~14 at.% V along the 33 at.% Si line. The C phase was found to be in equilbrium with the R, B,  $\Gamma_1$ ,  $\Gamma'_1$  and E phase regions. The B, R, and  $\sigma$  phases were also found to be in equilibrium with the  $\beta$  phase of the Si-V binary. [1966Bar] also showed the  $\sigma$  phase to be in equilibrium with the  $\beta$  phase of the Co-V binary. Because the CoV<sub>3</sub> phase is not stable above 1025 °C, the three-phase equilibrium  $\sigma + \beta$  (CoV<sub>2</sub>) +  $\alpha$  is not possible and, hence, is not shown in Fig. 5. Because at the Co-end of the Co-V system both fcc  $\varphi$  and cph  $\epsilon$  phases exist at 1100 °C, one should expect the presence of a cph  $\epsilon$  phase region in the ternary,

#### **Section II: Phase Diagram Evaluations**

and a  $\varphi + \epsilon + \zeta$  three-phase equilibrium is to be expected. This was not shown by [1966Bar] and is shown schematically in Fig. 5.

The CoV<sub>3</sub> and SiV<sub>3</sub> phases are isostructural. In an investigation aimed at finding a split structure in ternary Cr<sub>3</sub>Si-type phases (due to a third element occupying preferentially the bcc position of the Cr<sub>3</sub>Si-type structure), [1969Jei] studied several ternary systems, one of which was the Co-Si-V system. The alloys were arc-melted under an argon atmosphere using 99.8 mass% V and 99.9 mass% Co and Si, were sealed in evacuated quartz capsules, and were annealed at 550 °C for 45 days, 850 °C for 4 days, and 1050 °C for 20 days. Up to 850 °C, the alloys were single-phase  $\beta$ , but at 1050 °C some alloys were found to be two-phase,  $\beta$  and another phase that was not identified. In the Co-Si-V system, no split structure was found. The observation of the  $\beta$  phase in alloys at 1050 °C is possible because SiV<sub>3</sub> exists as high as 1925 °C. These results suggest the existence of a pseudobinary between the  $CoV_3$  and  $SiV_3$ phases, which is indicated in Fig. 4.

The Co-Si-V system should be studied above 50 at.% Si to establish the complete phase equilibria in the ternary system.

#### References

- **1960Gup:** K.P. Gupta, N.S. Rajan, and P.A. Beck, Effect of Si and Al on the Stability of Certain Sigma Phases, *Trans. AIME*, Vol 218, 1960 p 617-624 (Phase Equilibria, #)
- **1961Bar 1:** D.I. Bardos, K.P. Gupta, and P.A. Beck, New Ternary R Phases with Silicon, *Nature*, Vol 192 (No. 4804), 1961, p 744 (Crystal Structure)
- **1961Bar 2:** D.I. Bardos, K.P. Gupta, and P.A. Beck, Ternary Laves Phases with Transition Metals and Silicon, *Trans. AIME*, Vol 221, 1961, p 1987-1988 (Crystal Structure)
- **1961Gla:** E.I. Glady-Shevskii, P.I. Kripyakevich, M.Yu. Teslyuk, O.I. Zarechnyuk, and Yu.B. Kuzma, *Kristallografiya*, Vol 6, 1961, p 267
- **1966Bar:** D.I. Bardos and P.A. Beck, Electron Phases in Certain Ternary Alloys of Transition Metals with Silicon, *Trans. AIME*, Vol 236, 1966, p 64-69 (Phase Equilibria, #)
- **1969Jei:** W. Jeitschko, A.G. Gordon, and P.A. Beck, V and E Phases in Ternary Systems with Transition Metals and Silicon and Germanium, *Trans. AIME*, Vol 245, 1969, p 335-339 (Crystal Structure)

Co-Si-V evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Program Co-Category Editor for ternary nickel alloys.